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1. Motivation 
 

•  Existence of solutions on finite time intervals is very restrictive and in most 

cases we need existence on 0[ , )t ∞  for any 0 0( , ) nt x R R∈ × .  

•  Comparison principle is an important tool to estimate bounds on the solutions 
without solving ODE.  

•  Comparison principle is variation of inequality techniques.  
 
2. Global Existence 
 
1) Linear Boundedness 
 

Definition 5.1 : n nf R R R× →  is linearly bounded if there exist 0a ≥  and 0b ≥  

such that  

|| ( , ) || || ||f t x a x b≤ +  for all ( , ) nt x R R∈ × . 

 

Theorem 5.1 Suppose that ( , )f t x  is continuous; locally Lipschitz on nR R×  and 

linearly bounded. Then the unique solution ( )x t  of ( E ) has max 0[ , )I t+ = ∞  for any 

0
nx R∈ .  

Proof. Suppose that max 0[ , )I t ω+
+= . We show ω+ = ∞ . Since 

0
0( ) ( , ( ))

t

t
x t x f s x s ds= + ∫ , 

we have  

0 0
0 0|| ( ) || || || || ( , ( ) || || || ( || ( ) || )

t t

t t
x t x f s x s ds x a x s b ds≤ + ≤ + +∫ ∫  

0
0 0(|| || ( )) || ( ) ||

t

t
x b t t a x s ds≤ + − + ∫ . 
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Application of Gronwall’s inequality yields 
0( )

0 0|| ( ) || (|| || ( )) a t tx t x b t t e −≤ + − . 

If ω+ < ∞ , then  

0( )
0 0|| ( ) || (|| || ( )) a tx t x b t e ωω + −

+≤ + − < ∞ . 

This is not possible by the continuation theorem. This shows that ω+ = ∞ .   

 

Remark 5.1 Even for a linear system ( ) ( )x A t x h t′ = + , where ( )A t , ( ) ( )h t C R∈ , 

not necessarily bounded on ( , )−∞ ∞ , so it is not necessary to satisfy the linear 

boundedness. Although the linearly bounded is rather restrictive, it is easy to be 
checked.  
 
2) Additional Lyapunov Condition 
 

Theorem 5.2 Let ( , )f t x  be continuous and locally Lipschitz on nR R× . Suppose 

that there exist ( , ) : nV t x R R R× →  of class 1C  such that  

•  1 2( ) ( , ) ( )W x V t x W x≤ ≤  where 1( ) 0W x ≥  with 1( ) 0W x = ⇒ 0x = ; 

(positively definite)  
•  1|| ||

lim ( )
x

W x
→∞

= ∞ , (radially unbounded); 

•   
.

1( , ) ( , ) ( )
def V VV t x f t x a bW x

t x
∂ ∂

= + ⋅ ≤ +
∂ ∂

 . 

Then the unique solution ( )x t  of ( E ) has max 0[ , )I t+ = ∞  for any 0
nx R∈ .  

Proof. By the above Lyapunov conditions, we have  

1
( , ( )) ( , ( ))( , ( )) ( , ( )) ( ( ))d V t x t V t x tV t x t f t x t a bW x t

dt t x
∂ ∂

= + ⋅ ≤ +
∂ ∂

 

( , ( ))a bV t x t≤ + . 

Integrating this inequality yields 

0
0 0( , ( )) ( , ) ( ( , ( ))

t

t
V t x t V t x a bV s x s ds≤ + +∫ . 

Application of Gronwall’s inequality gives the bound  
0( )

0 0 0( , ( )) { ( ) ( , )} b t tV t x t a t t V t x e −≤ − + . 

That is,  
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0( )
1 0 0 0( ( )) { ( ) ( , )} b t tW x t a t t V t x e −≤ − + . 

If max 0[ , )I t ω+
+=  with ω+ < ∞ , then  

0( )
1 0 0 0( ( )) { ( ) ( , )} b tW x t a t V t x e ωω + −

+≤ − + < ∞ .            (F1) 

By the continuation theorem, it must have lim || ( ) ||
t

x t
ω +→

= ∞ . Then,  

1 1|| ||
lim ( ( )) lim ( )
t x

W x t W x
ω +→ →∞

= = ∞ . 

This contradicts (F1). This contradiction shows that ω+ = ∞ .    

 

Corollary 5.1 Let ( )f x  be locally Lipschitz on nR . Suppose that there exist 

( ) : nV x R R→  of class 1C  such that  

•   ( ) 0V x ≥  with ( ) 0V x =  ⇒  0x = ; (positively definite)  

•  
|| ||
lim ( )
x

V x
→∞

= ∞ , (radially unbounded); 

•   
.

( ) ( , ) ( )
def VV x f t x a bV x

x
∂

= ⋅ ≤ +
∂

 . 

Then the unique solution ( )x t  of ( E ) has max [0, )I + = ∞  for any 0
nx R∈ .  

Proof. Since ( )f x  is free of t , then we take 1 2( ) ( , ) ( ) ( )V x V t x W x W x= ≡ ≡  and 

0 0t = .   

 
Remark 5.2 How to find a desired Lyapunov candidate, there is no systematic way in 
general to get it. It is still an open problem in Math. However, existence of Lyapunov 
function is guarantied under reasonable mild conditions. The details will be given in 
Lyapunov stability theory.  
 
3. Some Important Class of Systems with Global Existence  
 
1) Gradient Systems 

 

Suppose that 0( ) : nV x R R≥→  is a function of 2C .  

( )x V x′ = −∇ ,  
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is called a gradient system, where 
1 2

( ) , , ,
T T

n

V V V VV x
x x x x

 ∂ ∂ ∂ ∂ ∇ = =    ∂ ∂ ∂ ∂  
 .  

Lemma 5.1 Suppose that 0( ) : nV x R R≥→  is a function of 2C  with 
|| ||
lim ( )
x

V x
→∞

= ∞ . 

Then any solution of the gradient system exists for all 0t ≥ .  
 
Proof. Making derivative along trajectories of the gradient system, we have 

2( )( ( )) || || 0
Td V V V V xV x t x

dt x x x x
∂ ∂ ∂ ∂ ′= ⋅ = − ⋅ = − ≤ ∂ ∂ ∂ ∂ 

. 

We know that 0( ( )) ( )V x t V x≤  for all 0t ≥ . From which we conclude that 

max [0, )I = +∞ . Otherwise, there exists a time ω+ < ∞  s.t.  
_____

lim || ( ) ||
t

x t
ω−

+→
= ∞  by the 

continuation theorem. Then, there exists { }nt ω−
+→  as n →∞  s.t. 

|| ( )||
lim ( ( ))
n

n
x t

V x t
ω−

+→
= ∞ . 

This contradicts 0( ( )) ( )V x t V x≤ . So max [0, )I = +∞ .   

 

Remark 5.3 If 1( ) { : ( ) }x V c x V x c−∈ = =  is a regular point (i.e. ( ) 0V x∇ ≠ ), the 

solution curve ( )x t  is perpendicular to the level surface 1( )V c− . Since for any curve 

1( ) ( )t V cγ −∈  with (0) xγ =  and (0) yγ ′ = , we have 

0 0
( ( ))0 ( ( )) | ( ) | ( )) ( ),T

t t
d V tV t t V x y V x y
dt x

γγ γ= =

∂ ′= = ⋅ = ∇ ⋅ = ∇
∂

. 

 
2) Hamiltonian Systems 
 

Suppose that 0( , ) : n nH x y R R R≥× →  is a function of 2C .  

( , )yx H x y′ = ∇ ; ( , )xy H x y′ = −∇  

is called the Hamiltonian equation, where ( , )H x y  is called a Hamiltonian function.  

Since ( )( ) ( , ), ( , )
T

y xf x H x y H x y= ∇ −∇  is locally Lipschitz, so the existence 

and uniqueness of solution is done. Suppose that ( ( ), ( ))x t y t  is a solution. Then, 

( ( ), ( )) ( ( ), ( )) ( ) ( ( ), ( )) ( ) 0x y
d H x t y t H x t y t x t H x t y t y t
dt

′ ′= ∇ +∇ ≡ . 
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( ( ), ( ))H x t y t⇒ ≡ const. 

( , )H x y  can be regarded as a Lyapunov candidate for the Hamiltonian equation. If 

||( , )||
lim ( , )

x y
H x y

→∞
= ∞ , then the level set {( , ) : ( , ) }x y H x y c=  is closed and bounded. 

We conclude that max ( , )I = −∞ +∞ . Otherwise, there exists a time ω+ < ∞  

(ω− > −∞ ) s.t. 
____

( )
lim || ( ( ), ( )) ||

t
x t y t

ω ω− +
+ −→

= ∞ . From which it yields that there exist 

( ( ), ( )) ( , ) {( , ) : ( , ) }n n n nx t y t x y x y H x y c= ∈ =  s.t. 
||( , )||

lim ( , )
n n

n nx y
H x y

→∞
= ∞ . 

However, this is not possible.   
 
3) Van der Pol Equation 
 

2(1 )x x x xε′′ ′= − −  

is called Van der Pol equation, where 0ε >  is a small parameter. The form of 
system:  

2(1 )
x y
y x y xε
′ =

 ′ = − −
, 

can be regarded as a perturbation of a particular Hamiltonian system: 

x y
y x
′ =

 ′ = −
. 

From which we find 2 21( , ) ( )
2

H x y x y= +  satisfying 
|| ||
lim ( , )
x

H x y
→∞

= ∞ , which can 

be taken as a Lyapunov candidate for the Van der Pol equation. Then we have  
2

2 2
2 2

0, 1
( , ) (1 ) 2 ( , )

, 1
xd H HH x y x y x y H x y

dt x y y x
ε ε

ε
 ≥∂ ∂′ ′= + = − ≤ ≤∂ ∂ ≤

. 

By Corollary 5.1, we obtain the global existence.  
 
4) Dissipative Systems 
 

Let : n nf R R→  be locally Lipschitz. Suppose that there exist nv R∈ , and 

0a > , 0b >  s.t.  

                  2( ), || ||f x x v a b x− ≤ − . 

Then the IVP ( )x f x′ = , 0(0)x x= , has a unique solution ( )x t  for 0t ≥ .   
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Proof. Taking a ball 2
0 { : || || }n aB x R x

b
= ∈ ≤  and a Lyapunov candidate as follows. 

21( ) || ||
2

V x x v= −   

satisfying 
|| ||
lim ( )
x

V x
→∞

= ∞ , we have  

2( ( )) ( ), || || 0d V x t f x x v a b x
dt

= − ≤ − <  as 2|| || ax
b

> . 

This implies the global existence by Corollary 5.1.  
 

Remark 5.4 The general definition of dissipative systems for ( )x f x′ =  is given as 

follows. 

If there exists a bound 0B >  s.t. for any solution ( )x t  of ( )x f x′ = , 

0(0)x x= , there exists a sufficiently large constant 0( ) 0T x > , s.t  

0( )t T x≥  ⇒  || ( ) ||x t B< , 

then ( )x f x′ =  is called a dissipative system. Obviously, the above system is 

dissipative.  
 
5)  Lorentz Equations 
 

The Lorentz equations are given by  

1 1 2

2 1 3 1 2

3 1 2 3

x x x
x x x r x x
x x x bx

σ σ′ = − +
 ′ = − + −
 ′ = −

, 

where 0σ > , 0r >  and 1b >  are system parameters. (Note: when 0 24.74r r> = , 

it could exhibit chaotic behavior)  

Taking ( )0, 0,v γ= , where rγ σ= + , we have  

2 2 2
1 2 3 1 2 3( ), ( )f x x v x x bx r x x b xσ σ γ γ− = − − − + + − +  

2 2 2
1 2 3 3x x bx b xσ γ= − − − +  

2
2 2 2
1 2 32 2

bx x x b γσ≤ − − − +  

2 2 2 2
1 2 3( ) || ||a b x x x a b x= − + + = − , 
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where 
2

2
a b γ=  and min{ ,1, }

2
bb σ= . So the Lorentz equations are dissipative. 

 
4. Comparison Principle 
 
1) Dini Derivative 

____

0

( ) ( )( ) lim
h

v t h v tD v t
h+

+

→

+ −
= ,  

where :v R R→ . When the right limit is unique, we have a right hand derivative as 

follows. 

                        
0

( ) ( )( ) limr
h

v t h v tD v t
h+→

+ −
= . 

 
2) Comparison Lemma 

 

Lemma 5.2 (Comparison Lemma) Consider the scalar function ( , )f t u  is 

continuous and locally Lipschitz, where 0t t≥  and u R∈ . If  

0 0( ) ( , ( )), ( )u t f t u t u t u′ = = ;  

0 0( ) ( , ( )), ( )rD v t f t v t v t v≤ =  

with 00 uv ≤ , then )()( tutv ≤  on any compact interval 0 1[ , ]t t t∈ .  

Proof. Consider 

0 0
1( ) ( , ( )) ( , ( ), ), ( )z t f t z t F t z t n z t u
n

∆
′ = + = = ,            (C.1) 

where n N +∈ . On any 0 1[ , ]t t , we conclude from the continuous dependence that for 

any 0ε > , there exists 0 1n ≥  s.t. 0n n≥ , the IVP (C.1) has a unique solution 

( , )z t n , defined on 0 1[ , ]t t  and  

| ( , ) ( ) |z t n u t ε− ≤ , 0 1[ , ]t t t∈ .                  (C.2) 

Claim 1: ( ) ( , )v t z t n≤ , 0 1[ , ]t t t∈ , 0n n≥ .  

Show by contradiction. If it were not the case, there would be times 

0 1, [ , ]a b t t∈  s.t. ( ) ( , )v a z a n=  and ( ) ( , )v t z t n>  for all a t b< ≤ . Consequently, 

( ) ( ) ( , ) ( , )v t v a z t n z a n− > − , ( , ]t a b∈ , 



 8 

        ⇒         ( ) ( ) ( , ) ( , )v t v a z t n z a n
h h
− −

> , ( , ]t a b∈ , 

    ⇒     1( ) ( , ) ( , ( , )) ( , ( , )) ( , ( ))rD v a z a n f a z a n f a z a n f a v a
n

′≥ = + > = , 

which contradicts the condition ( ) ( , ( ))rD v t f t v t≤  for all 0 1[ , ]t t t∈ .  

Claim 2: ( ) ( )v t u t≤ , 0 1[ , ]t t t∈ , 0n n≥ .  

Show by contradiction. If it were not the case, there would be time 0 1( , ]a t t∈  

s.t. ( ) ( )v a u a> . Taking ( ) ( ) 0
2

v a u aε −
= >  and using (C.2), we have 

      ( ) ( , ) ( ) ( ) ( ) ( , ) 2v a z a n v a u a u a z a n ε ε ε− = − + − ≥ − = , 

which contradicts Claim 1.   
   

Example 5.1 Find the bound of solution for the IVP xxxfx )1()( 2+−==′ , 

ax =)0(  without solving the equation. 

Solution. It has a unique solution on [0, )ω+  for some certain 0ω+ >  (ω+  could 

be infinity) because )(xf  is locally Lipschitz continuous. Let )()( 2 txtv = . Then 

1)( Ctv ∈  and )(2)(2)(2)()(2)( 2422 txtxtxtxtxtv −≤−−==′ . Hence,  

)(2)( tvtv −≤′ , 2)0( av = .  

Consider the IVP uu 2−=′ , 2)0( au = ⇒  teatu 22)( −= . Then, by the comparison 

lemma, the solution )(tx  is defined on any compact interval 1[0, ] [0, )t ω+⊂ , and 

satisfies 

||)(|)(| aetvtx t−≤= , 1[0, ]t t∈ . 

First, we say that the above inequality holds for [0, )ω+  by continuation 

theorem. Then we conclude that the inequality holds for all 0≥t . If it were not the 

case, it would be time ω+ < ∞  s.t. 
____

lim | ( ) |
t

x t
ω−

+→
= ∞  by the continuation theorem. 

However, this is not possible because | ( ) | | |x t e aβ−≤ < ∞  for all 0≥t . Therefore,  

||)(|)(| aetvtx t−≤= ,  0≥∀t .   
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Example 5.2 Find the bound of solution for the IVP texxxtfx ++−==′ )1(),( 2 , 

ax =)0(  without solving the equation. (Homework)  

 
3) An Important Lemma for a Vector Function 
 

Lemma 5.3 Suppose that 1( ) ([ , ])x t C a b∈  is an n -vector valued function, then 

(|| ( ) ||)rD x t  exists on a t b≤ <  and (|| ( ) ||) || ( ) ||rD x t x t′≤ , a t b≤ < . 

Proof. For the existence of (|| ( ) ||)rD x t , For any x , nRy∈  and 10 ≤<θ , 0>h , 

we have (∆  inequality)  

|| || || || || || (1 ) || ||x h y x h y x x xθ θ θ θ θ+ − + ≤ − ≤ − , 

⇒         || || || || (|| || || ||)x h y x x h y xθ θ+ − ≤ + − ; 

⇒         || || || || || || || ||x h y x x h y x
h h

θ
θ

+ − + −
≤ . 

This implies that || || || ||x h y x
h

+ −  is non-decreasing on 0>h . Moreover, it is 

bounded below by |||| y−  since || || || || || ||x h y x h y+ ≥ − .  Therefore  

0

|| || || ||lim
h

x h y x
h+→

+ −  exists. 

Since 1( ) ([ , ])x t C a b∈ , then the latter limit implies  

0

|| ( ) ( ) || || ( ) ||lim
h

x t hx t x t
h+→

′+ −  exists. 

Since  

|{|| ( ) || || ( ) ||} {|| ( ) ( ) || || ( ) ||} |x t h x t x t hx t x t′+ − − + −  

               |{|| ( ) || || ( ) ( ) ||} |x t h x t hx t′= + − +  

               |{|| ( ) ( ) ( ) ||} | ( )x t h x t hx t o h′≤ + − − = , (Tailor Expansion) 

as +→ 0h , it follows that  

0

|| ( ) || || ( ) ||lim
h

x t h x t
h+→

+ −
0

|| ( ) ( ) || || ( ) ||lim
h

x t hx t x t
h+→

′+ −
=  exists. 

Therefore,  
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(|| ( ) ||)rD x t =
0

|| ( ) || || ( ) ||lim
h

x t h x t
h+→

+ −  exists. 

Since  
|| ( ) || || ( ) || || ( ) ( ) ||x t h x t x t h x t

h h
+ − + −

≤  for 0>h , 

take the limit as +→ 0h  on both sides to obtain (|| ( ) ||) || ( ) ||rD x t x t′≤  and the 

proof is completed.   
 

Remark 5.5 This lemma shows that once (|| ( ) ||)rD x t  exists, derivative sign and 

norm sign can exchange with the inequality relation (|| ( ) ||) || ( ) ||rD x t x t′≤ . It looks 

seemly nothing to do with ODE. However, it is important for ODE with the bound 
estimation of solution.  
 
4) Comparison Theorem for the Global 
 

Theorem 5.3 (Comparison Theorem) Suppose that ( , )f t x  of ( E ) is continuous 

and locally Lipschitz, where 0[ , )t t ω +∈  (ω +  could be infinity) and nx R∈ ; and 

satisfies 

 || ( , ) || ( , || ||)f t x F t x≤ , 0( , ) [ , ) nt x t Rω +∈ × , 

and 0|| ( ) ||x t η≤ , where the IVP of the scalar equation  

0( , ), ( )u F t u u t η′ = =  

has a unique solution ( )u t  for 0[ , )t t ω +∈ . Then, ( )x t  exists on 0[ , )t t ω +∈  and  

|| ( ) || ( )x t u t≤  for all 0[ , )t t ω +∈ . 

Proof. Let ( ) || ( ) ||v t x t= . Then  

( ) || ( ) || || ( ) || || ( , ( )) || ( ,|| ( ) ||) ( , ( ))r rD v t D x t x t f t x t F t x t F t v t′= ≤ = ≤ =  

and 0 0( ) || ( ) ||v t x t η= ≤ . Application of Lemma 5.1 (the comparison lemma) yields  

|| ( ) || ( )x t u t≤  

for any compact interval of 0[ , )t ω + . We conclude that || ( ) || ( )x t u t≤  for all 

0[ , )t t ω +∈ . Show by contradiction. If it were not the case, it would be a time c  with 
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0t c ω +< <  s.t. 
____

lim || ( ) ||
t c

x t
−→

= ∞  by the continuation theorem. But this is not possible 

because || ( ) || ( )x c u c≤ < ∞ .   

 
Remark 5.6 The result of Theorem 5.3 (Comparison Theorem) is global!! It doesn’t 
matter if Lipschitz condition is not satisfied. However, the uniqueness of solution is 
not guaranteered.  
 

Remark 5.7 Finding ( )u t  is a key in application of this comparison theorem. For 

example, ( , )F t u au b= + (Linear Equation); ( , ) nF t u au bu= + (Bernoulli Equation); 

( , ) ( ) ( )F t u g t F u= (Wintner Theorem) and the others (DIY), ( )u t  can be found.   

 
5) Some Important Applications 
 
Theorem 5.4 (Wintner Theorem) Suppose that in Theorem 5.3, if 

|| ( , ) || ( ) ( || ||)f t x g t L x≤ , 

where ( ) 0g t ≥  is continuous for 0t t≥  and ( ) 0L u ≥  is continuous for 0u > , and 

satisfies 

0 ( )u

du
L u

+∞
= +∞∫ , 

then the solution ( )u t  of ( ) ( )u g t F u′ = , 0 0( ) 0u t u= > , with 0 0|| ( ) ||x t u=  exists 

for all 0t t≥  and satisfies  

|| ( ) || ( )x t u t≤  

for all 0t t≥ .  

Proof. By the comparison theorem, we only need to show the existence of 0 0( ; , )u t t u  

for all 0t t≥ . Since ( )u t  satisfies  

0 0

( )
( )

u t

u t

du g s ds
L u

=∫ ∫ , 

if ( )u t  would not exist globally on 0t t≥ , there would be a finite escape. Then there 
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exists ω+ < ∞  and { }nt  s.t. lim ( )
n

n
t

u t
ω −

+→
= ∞ . That is,  

0 0

( )
( )

( )
n nu t t

u t

du g s ds
L u

=∫ ∫ . 

But, this is not possible because the left is ∞  and the right is finite.   
 

Theorem 5.5 For linear equations ( ) ( )x A t x h t′ = + , where )(tA , )(th )(RC∈ , then 

max 0[ , )I t= +∞ , 0t R∈ .  

Proof. In fact,  

|| ( ) ( ) || || ( ) || || || || ( ) ||A t x h t A t x h t+ ≤ +  

        max{|| ( ) ||, || ( ) ||}(|| || 1) ( ) (|| ||)A t h t x g t L x≤ + = . 

Since ( ) 1L u u= +  is continuous and locally Lipschitz, and 
0 1
u du

u
= ∞

+∫ , we have 

the desired result by Wintner theorem.    
 

Remark 5.8 You may prove Theorem 5.5 with max ( , )I = −∞ +∞  by Gronwall’s 

inequality. (Homework) 
 
5.  Summary  
 
•  We introduced three main methods for the global existence: the linear 

boundedness, Lyaponove method and the comparison method.  
 
•  Several important classes of systems have the global existence. 
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